植物油流量计是基于传统阻抗式环空找水仪改进的,改进了集流伞中心管及进液口的结构,增加了气液分离短节。针对聚集于集流伞上端的气体设计了排气通道,将气体直接排出(排气通道位于集流伞内部进液口上端),不流经测量通道,从而将油气水三相流测量简化为两相流测量。
该仪器结构(图1)包括集流伞、排气短节、涡轮、含水率短节及电路短节。排气短节位于集流伞的顶部,由外壳与内部8根排气通道组成。涡轮叶片与外壳之间留有一定的空隙,即使较大砂粒或杂物也可顺利通过。叶片下方设计有螺旋形增力叶片,提高了涡轮的灵敏度,涡轮K值提高到2.0左右,降低了涡轮的启动排量,启动排量*低可将至0.7m3/d。
表1葡xxx-SPxx井各测点对比数据
序号 |
测点深度(m) | 传统式阻抗 | 排气型阻抗 | ||
分层产量(m3/d) | 分层产水(m3/d) | 分层产量(m3/d) | 分层产水(m3/d) | ||
1071.9 | 18.2 | 10.9 | 14.87 | 10.33 | |
1088.3 | 9.6 | 8.4 | 9.07 | 8.19 | |
1110.1 | 1.1 | 0.7 | 0.97 | 0.02 | |
1123.3 | 17.9 | 17.2 | 17.41 | 16.71 | |
1130 | 0 | 0.0 | 0 | 0 |
由于该仪器能够通过排气通道排出集流伞内所聚集的气体,从而减少脱气现象对流量测试结果的影响。为验证该仪器的测试效果,在大庆油田*七采油厂聚驱实验区的部分产油井进行了对比测试研究。
图2为传统植物油流量计所录取测井曲线(所测得产量为46.8m3/d),图3为植物油流量计所录取的测井曲线(所测得产量为42.32m3/d),该井当天产液量为41m3/d(排气型阻抗更贴近井口量油)。
通过以上数据对比(表1),1号层存在问题,后经过分析归结于产气影响。而排气型阻抗通过气阀排出气体,有效的降低了脱气对测试数据的影响。
图4、图5中所示曲线为测量过程中所截取的集流伞中所聚集的气相,通过排气通道排出时与排出后的测量曲线。测试过程中录取到的仪器排气的过程,当集流伞完全支开后仍需要开启流量测试进行实时检测,否则可能会录取资料失真。
3结论
(1)该仪器通过增加排气阀排气,有效的降低了脱气现象对测试数据的影响。
(2)该仪器的量程及灵敏度满足外围油田的测试需求。
(3)当产气量超过排气范围时,测试数据仍会失真。